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ATTENUATION OF SINUSOIDAL PERTURBATIONS SUFPERIMPOSED
ON LAMINAR FLOW OF A LIQUID IN A LONG LINE
by Carl M. Holland, Robert J. Blade, and Robert G. Dorsch

Lewis Research Center

SUMMARY

The attenuation constant for sinusoidal pressure and flow perturbations
superimposed on the laminar flow of a viscous liquid was measured in a system
consisting of a long, straight, cylindrical hydraulic line. The upstream and
downstream ends of the line were securely fastened to the ground. A sinusoidal
perturbation was imposed on the mean flow at the upstream end by means of a
small oscillation of a throttle valve about a partly open mean position. The
downstream end was terminated in a restricting orifice. Pressure perturbations
were measured at three locations along the line for frequencies from 15 to
100 cps. These pressure measurements were reduced by use of a pair of complex
damped acoustic one-dimensional wave equations to obtain the attenuation con-
stant along with the phase constant and the dimensionless downstream admittance.
For the range of frequencies investigated, the experimental values of the atten-
vation constant are in good agreement with classical theory.

INTRODUCTION

Acoustic pressure and flow perturbations in hydraulic lines are of impor-
tance in the operation of wvarious fluid systems. The dynamics of hydraulic con-
trol and rocket-propellant feed systems are of particular interest to the aero-
space industry. For example, longitudinal instability of liquid rocket boosters
results from dynamic coupling between flow perturbations in the propellant feed
system and structural oscillations. The Lewis Research Center has therefore
conducted experimental and analytical studies of acoustic disturbances in
flowing-liquid systems.

Transfer functions for acoustic disturbances superimposed on the turbulent
flow of a liquid propellant flowing in long cylindrical lines of several geomet-
rical networks are reported in references 1 to 3. These measurements were made
with a nonviscous hydrocarbon liquid with small attenuation (about 3 percent
per 100 ft). Other investigators have reported transfer functions and distrib-
uted line impedance for damped acoustic disturbances in lines containing a vis-
cous liquid with appreciable attenuation (refs. 4 to 7).

The analytical expression for the pressure transfer function depends upon



three parameters: the attenuation constant, the phase constant, and the ratio
of the downstream admittance to the characteristic admittance of the line
(referred to herein as the "dimensionless downstream admittance"). Experimental
values of the attenuation constant are reported in references 8 and 9 for sound
waves in stationary air within tubes. -

The results of an experimental study of the attenuation constant for acous-
tic disturbances superimposed on the mean laminar flow of a viscous liquid flow-
ing in a long line are reported herein. Experimental data were obtained by
measuring perturbation pressures at three stations along the line. Experimental
values were computed from the data and compared with analytical values obtained
from classical theory.

APPARATUS

Flow system. - The essential parts of the open-loop pumped-return flow
system used in the experiment are shown in figure 1. The test fluid was an
additive-free SAE 20 motor oil with a viscosity which resulted in laminar mean
flow in the line at the operating conditions. The oil was supplied by a gear
pump, and the mean flow rate was measured by means of a rotameter. A heat ex-
changer in the fluid-supply tank capable of either heating or cooling maintained
the fluid at a constant temperature during each run. Hydraulic accumulators
were placed between the pump and the test line to provide steady supply pressure.
The discharge from the test line was submerged in a constant-height, vented tank.
Fluid was returned to the supply tank by intermittent operation of the return

pump.

Flow disturbance generator. - Sinusoidal perturbations of flow and pressure
were induced in the system by means of an electrohydraulic servoactuated throt-
tle located just upstream of the test line. The throttle was oscillated sinus-
oidally about a partly open mean position in response to an alternating voltage.

Test line. - The test line, made of stainless-steel tubing, 1.00 inch in
outside diameter with a 0.065-inch wall thickness, was 68 feet long. A sche-
matic diagram of the test line is shown in figure 2. The upstream end was
attached to the throttle valve, which, in turn, was securely fastened to the
ground. The downstream end was bolted to a 3-inch-diameter pipe fastened to a
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~ tank
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Figure 1. - Experimental setup of hydraulic lines.
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Figure 2. - Test line.

5-ton block of concrete set in the ground. Between the ends, the test line
rested on horizontal transverse wires . spaced at 2-foot intervals. The line was
terminated in an orifice plate containing 21 holes, 0.040 inch in diameter.

The orifice plate was rigidly attached to the line.

Instrumentation. - Pressure sensors, commercial flush diaphragm units,
were rigidly attached to the line at stations A, B, and C (fig. 2). The pres-
sure sensors with their associated amplifiers were calibrated by static methods.
Relative gain factors among the sensors were then determined from the calibra-
tions.

The output of the pressure sensors was in the form of alternating-current
electrical signals with phase and amplitude determined by the local perturbation
pressure. These alternating-current signals were amplified and fed into a
transfer-function analyzer. The transfer-function analyzer consisted of two
units: (1) an oscillator, which supplied (a) the signal to activate the electro-
hydraulic flow-disturbance generator and (b) a four-phase reference voltage to
the resolved component indicator, and (2) a resolved component indicator, which
indicated the in-phase and quadrature (90° out of phase) components of the pres-
sure signals with respect to the reference voltage. The transfer-function
analyzer effectively rejects all frequencies (associated with noise and har-
monics) except the reference frequency (generated by the oscillator) and indi-
cates the output signal of the pressure sensors in resolved component form.

PROCEDURE

Test. - The flow system was operated at constant mean flow rate, pressure,
and temperature until conditions had stabilized. Mean gage pressure readings
were taken at stations A and C, the mean flow rate was read on the rotameter,
and the temperature adjacent to the downstream orifice was recorded. The servo-
throttle was operated at a series of frequencies. The amplitude of the throttle
area variation was maintained constant over the entire range of frequencies for
each run. It was kept small relative to the mean open area to avoid nonlinear
effects but large enough to give an adequate ratio of signal to noise. The
resulting average amplitude of sinusoidal pressure perturbations was about
15 pounds per square inch. At each frequency, the values of the in-phase and
gquadrature components of the three dynamic pressures (upstream, quarter length,
and downstream) were read in succession on the resolved component indicator.



The mean pressure drop across the downstream orifice and the fluid temper-
ature were constant during each run but were independently changed from run to
run to vary the average orifice impedance (controlled by both of these factors)
and the viscosity of the fluid (controlled mainly by fluid temperature).

The data were taken over a range of disturbance frequencies from 15 to
100 cps, mean line pressures from 165 to 315 pounds per square inch gage, and
temperatures from 80° to 125° F. The range of variation of these parameters de-
pended upon facility limitations. The range of frequencies, mean line pres-
sures, and temperatures resulted in a range of absolute viscosities from
0.748x10-3 to 2.54x10-3 pound-second per square foot, Reynolds numbers of the
mean flow (with inner tube diameter as the characteristic length) from 263 to
1200, mean flow rates from 5.5 to 8.0 feet per second, and magnitudes of dimen-
sionless downstream admittance from 0.63 to 1.2.

The oil was deaerated between runs by flowing it at low speed and high
temperature for about 1 hour through the receiving tank (fig. 1, p. 2) in which
a vacuum of 10 inches of mercury existed. During each data run, the receiving
tank was vented to the atmosphere.

Data analysis. - The following quantities were computed from the experi-
mental data for each frequency:

(1) The attenuation constant o in nepers per foot
(2) The phase constant B in radians per foot
(3) The complex dimensionless admittance at station C, Z,/Zg
(A1l symbols are defined in appendix A.)
These quantities were computed from the data for each frequency by use of

a pair of complex pressure transfer functions for (1) stations A and C (fig. 2)
and (2) stations B and C. This pair of transfer functions is given by equa-

tions (1) and (2), respectively:

PA ZO

— = cosh(a + jB)lp + =— sinh(a + jB)I 1
P A" 7o By (1)
Py . 2o .

P—C' = COSh(@ + JB)ZB + Z—C Slnh(d; + JB)ZB (2)

These equations were obtained from the well-known complex pressure transfer
function for damped sinusoidal one-dimensional acoustic waves in uniform pipes.
They were solved (see appendix B) on a digital computer by use of a numerical

method.

The input data necessary were (1) the measured values of the in-phase and
quadrature components of Pp, Pp, and Pg and (2) the distances in feet 1p
and 1g between stations A and C and between stations B and C, respectively.
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Figure 3. - Variation of attenuation constant with frequency.



For comparison,; theoretical values of the attenuation constant o, the
phase constant B, and the specific characteristic impedance of the line Z,
were computed from classical equations derived in appendix C (primarily equa-
tions (C18), (C17), and (C18), respectively). The values of the density and
the effective adiabatic bulk modulus of the liquid in the line required by these
equations were obtained from the manufacturer and from references. (See
appendix D for these values and references). The absolute viscosity in pound-
seconds per square foot was obtained for each run from the mean-state data
(mean pressures at stations A and C and mean flow rate) by use of Poiseuille's
coefficient (ref. 10, p. 249).

RESULTS AND DISCUSSION

Experimental and analytical results for three runs (denoted herein as a,
b, and c¢) that cover the range of mean line conditions are given in figures 3
to 5. The data points were calculated from experimental pressure measurements
by the methods described in the PROCEDURE section and the analytical curves were
obtained from the equations of appendix C.

] Figure 3 gives the atten-
o zgxngm uation constant o in nepers
per foot as a function of fre-
1.0 quency. Dashed data-fit curves
] are shown along with the analyt-
@TEBX§91104%;1§Q3 N ical curves and the data points.
oO—al The data-fit curves were ob-
tained by a least-squares
method (appendix E) in which the
attenuation constant was taken
to be proportional to the square
root of frequency. This func-
tional relation was chosen for
the data-fit curves because it
is commonly used as an approxi-
mation (ref. 10, p. 242) to the
exact analytical curve. Al-
though there is considerable
{b) Run b, Absolute viscosity of fluid, 1. 46x10™3 pound-second per scatter in the individual data
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Figure 5. - Effect of frequency on ratio of phase constant to frequency.

downstream to the upstream pressure perturbation for a wave traveling in the

downstream direction for two points along a line which are separated by 100 feet
(30.5 m). PFigure 4 shows that for the conditions of this experiment the atten-
uation of pressure amplitude was of the order of 25 percent in a 100-foot line.

In addition to the attenuation constant, experimental and analytical values
of the phase constant B (see eqs. (1) and (2)) were determined. These values
are presented in figure 5 in the form B/f as a function of frequency. The
experimental and analytical results are in good agreement. The quantity B/f
is inversely proportional to the velocity of propagation of sinusoidal disturb-
ance waves in the line c¢. More precisely,

£-= (3)

Figure 5 indicates that the value of the velocity of propagation was nearly
constant for most frequencies of measurement.

As a check against obtaining extraneous roots in computing a, the experi-
mental magnitude and angle of the complex dimensionless admittance at station C
were compared with semianalytical values (see appendix B). These experimental
and calculated values corresponding to the runs shown in figures 3 to 5 are
given in table I. The mean experimental values of the magnitude of this ratio
were in very good agreement with the calculated values; the maximum deviation of
experiment from the calculations was less than #11 percent. The maximum differ-
ence between the experimental and the calculated angles of this ratio was less
than +10°. This agreement confirms the implied assumption that the method of
computing the data gave the roots of interest.



TABLE I. - CALCULATED AND EXPERIMENTAL VALUES OF COMPLEX DOWNSTREAM DIMENSIONLESS ADMITTANCE Zo/ZC

Run a Run b Run ¢
Frequency,| Magnitude of Angle of Frequency,| Magnitude of Angle of Frequency,| Magnitude of Angle of
cps admittance admittance cps admittance admittance cps admittance admittance
Zo/Zg Zo/Z0s Zo/Z¢ Zo/Zc> Zo/Zo Zo/Zg >
deg deg deg
Experi-|Calcu-|Experi-|Calcu- Experi-|Calcu-|Experi-|Calcu- Experi-|Calcu-|Experi-|Calcu-
mental |lated |[mental |lated mental |lated |[mental |lated mental |lated |mental |lated

17 0.65 0.67 0 -2 12 1.11 1.08 -7 -4 22 1.10 1.07 -2 -4
22 .65 .67 0 -2 14 1.08 1.08 -5 -4 24 1.08 1.07 -3 -4
24 .85 .67 0 -2 17 1.12 1.07 -6 -3 27 1.08 1.07 -1 -3
27 .84 .66 0 -2 22 1.12 1.07 -4 -3 29 1.04 1.07. -1 -3
29 .64 .66 0 -2 24 1.12 1.06 -2 -3 32 1.01 1.086 -1 -3
32 .83 .66 0 -2 27 1.07 1.06 -1 -3 34 1.00 1.086 -2 -3
34 .63 .66 1 -2 29 1.05 1.08 0 -3 37 .95 1.06 -4 -3
39 .64 .66 0 -2 32 1.00 1.086 2 -2 39 .96 1.06 ) -3
42 .84 .66 -4 -1 34 1.01 1.086 6] -2 42 1.02 1.08 -10 -3
44 .66 .86 -5 -1 37 1.02 1.05 -1 -2 44 1.03 1.06 -8 -3
47 .87 .66 -3 -1 39 .95 1.05 -4 -2 47 1.08 1.05 -8 -3
52 .68 .66 1 -1 42 1.01 1.05 -10 -2 49 1.09 1.05 -6 -3
54 .69 .66 1 -1 44 .99 1.05 -9 -2 52 1.10 1.05 -5 -3
57 .87 .66 3 -1 47 1.05 1.05 ~8 -2 54 1.10 1.05 -5 -3
62 .66 .66 3 -1 49 1.13 1.05 -3 -2 57 1.07 1.05 -4 -2
87 .68 .66 4 -1 52 1.10 1.05 -4 -2 59 1.07 1.05 -4 -2
89 .83 .66 4 -1 57 1.10 1.05 -3 -2 82 1.02 1.05 -3 -2
72 .63 .66 0 -1 62 .99 1.04 1 -2 64 1.05 1.05 -4 -2
74 .64 .66 1 -1 64 1.03 1.04 -3 -2 87 .99 1.05 -6 -2
77 .64 .66 -2 -1 67 1.02 1.04 -4 -2 69 1.00 1.05 -5 -2
79 .68 .66 -4 -1 69 1.00 1.04 -6 -2 72 1.00 1.05 -6 -2
82 .72 .66 -2 -1 72 1.03 1.04 -11 -2 74 1.00 1.05 -8 -2
84 .70 .66 1 -1 T4 1.086 1.04 -9 -2 77 1.04 1.04 -7 -2
87 .71 .65 3 -1 77 1.05 1.04 -7 -2 79 1.11 1.04 -8 -2
89 .70 .65 7 -1 79 1.06 1.04 -7 -2 82 1.11 1.04 -5 -2
92 .69 .85 8 -1 82 1.08 1.04 -5 -2 84 1.04 1.04 -5 -2
94 .87 .65 7 -1 84 1.09 1.04 -5 -2 87 1.08 1.04 -4 -2
97 .68 .B5 -4 -1 87 1.08 1.04 -4 -1 89 1.086 1.04 -5 -2
89 1.06 1.04 -4 -1 92 1.086 1.04 -8 -2
92 1.05 1.04 -6 -1 97 1.09 1.04 -7 -2
94 1.03 1.04 -4 -1 99 1.09 1.04 -7 -2

97 .99 1.04 -3 -1

29 .97 1.04 -6 -1

102 .95 1.04 -7 -1




CONCLUSTIONS

In a study of the attenuation of sinusoidal perturbations superimposed on
laminar flow of a liquid in a long line, the experimental and analytical results
were in good overall agreement. These results indicate that one-dimensional
damped acoustic-wave theory, as presented herein, satisfactorily describes the
attenvation constant and, more generally, sinusoidal disturbance propagation.
This statement is restricted to laminar mean flow of viscous Newbtonlan liquids
within long, firm-walled, nonvibrating, straight, cylindrical pipelines within
the frequency range studied.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, September 9, 1965.
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APPENDIX A

SYMBOLS
constant defined by eq. (E4)
tube inner radius, £t (m)
velocity of sinusoidal wave propagation in line, ft/sec (m/sec)
frequency, cps (hertz)
defined by eq. (C10)
Bessel function of first kind of order zero
Bessel function of first kind of order omne
~/-1
effective adiabatic bulk modulus of 1liquid in line, 1b/sq £t (N/m?)
distance from station C (fig. 2), ft (m)
defined by eq. (C9)
number of data points in run
sinusoidal-disturbance complex pressure amplitude, P(x), 1b/sq ft (N/m?2)

sinusoidal-disturbance complex pressure amplitude at x = O (station C)
for component of wave that is traveling in negative x-direction,
1b/sq £t (N/m2)

disturbance pressure, p(x,t), 1b/sq ft (N/mz)

specific series resistance of line to sinusoidal perturbation,
1b-sec/cu £t (N-sec/m5)

Reynolds number of mean flow with use of inner tube diameter as
characteristic length

radial coordinate in any cross-sectional plane of line with r =0
along axis, Tt (m)

time, sec

complex amplitude of sinusoidal-perturbation velocity in x-direction
averaged over cross-sectional area of line, U(x), ft/sec (m/sec)



U'(x,r)

complex amplitude of sinusoidal-perturbation velocity in x-direction,
ft/sec (m/sec)

perturbation velocity in x-direction averaged over cross-sectional
area of line, u(x,t), ft/sec (m/sec)

perturbation velocity in x-direction, u'(x,r,t), ft/sec (m/sec)
perturbation velocity in r-direction, v'(x,r,t), ft/sec (m/sec)

coordinate in axial direction of line with x =0 at station C
(fig. 2) and positive direction in upstream direction, ft (m)

specific impedance at station C (fig. 2) looking downstream, a complex
mmber (approximately real in this experiment), lb-sec/cu ft
(N-sec/m3)

specific characteristic impedance of line, a complex number,
1b-sec/cu ft (N-sec/m3)

attenuation constant, Np/ft (Np/m)

phase constant, rad/ft (rad/m)

absolute viscosity of fluid, lb-sec/sq ft (N-sec/mz)

density of fluid (denotes mean value except in dp), slugs/cu £t (kg/m°)
effective density of fluid defined by eq. (Cl2), slugs/cu ft (kg/m3)

frequency, 2anf, rad/sec

Subscripts:

A

B

station A (fig. 2)

station B (fig. 2)

station C (fig. 2)

data fit

data point

real part of complex number

imaginary part (quadrature component) of complex number

11



APPENDIX B

DETERMINATION OF PRESSURE TRANSFER FUNCTION PARAMETERS FROM DATA

Using identities and equating the real and the imaginary components of
equations (1) and (2) gives four equations in the four unknowns o, B, (ZO/ZC)X’

and (ZO/ZC)y as follows:

Z
(cosh aly)cos Bly + (g%) (sinh aly)cos Bl - <Z§>' (cosh alp)sin Bly

AN

&

N—
1l

x X v
(B1)
P z Z
(§%> = (sinh alp)sin By + (Z%) (cosh alp)sin iy + (%§> (sinh alp)cos Bly
v X Y
(B2)
P z Z
(ﬁ%) = (cosh alg)cos Bly + (29) (sinh alg)cos Blp - (Z%) (cosh alg)sin Blg
X C X ¥
(B3)

z 7
(sinh alg)sin Blp + (ZS) (cosh alg)sin Blg + (Zg) (sinh alg)cos Blp

NN

&

SN——
1l

C
Y X ¥
(B4)
Eliminating (ZO/ZC)X and (ZO/ZC)y from equations (Bl) to (B4) and using
identities gives two equations in the two unknowns o and B:
. Py . Pa
(sinh alp)cos Blp A (cosh aly)sin Bl 2
P P
C « C
(sinh alp)cos Blp _B (cosh alp)sin BlB =
Pc Pc
X Y
- [sinh a(lp - 1g)lcos B(ly - 1p) =0 (B5)

12



Py Pp
§E - (cosh aly)sin Bl §E (sinh alp)cos Blp
b y
P P
<§E) - (cosh mZB)sin Blg (§E> (sinh aZB)cos Blg
C % C ¥

-[sin B(14 - lp)lcosh a(lp - 1g) =0 (B6)

Equations (B5) and (B6) were solved for o and B on a digital computer by
use of a numerical solution, the Newton-Raphson method. The criterion of con-
vergence both « and B were forced to satisfy was that the magnitude of (1)
the difference between two successive values of the unknown (a,8) computed by
the numerical method for a given frequency divided by (2) the last computed
value of the unknown at that frequency must be less than or equal to 5%10-6.
Initial estimates for o and B were made for the calculation at the highest
frequency of each run. The values to which o and B converged at a given
frequency were used as the initial estimate in the numerical solution at the
next lower frequency of measurement.

The unknowns (Z,/Zc). and (Zy/Zg)_ can be calculated as follows: Equa-
tions (Bl) and (B2) give = s

Zo Py . Pp .
(ZE) = [<§E> (sinh aZA)cos Bl, - (ﬁa) (cosh &ZA)Sln Blp
¥

v x
5 -1
+ (cos Blp)sin BZA] EcoshzaZA)sin Blp + (sinhzaZA)coszﬁlA] (B7)
and
Z P P
(Z%) = [(ﬁg) (sin BZA)cosh @ZA,+'(§%> (cos BZA)sinh alp
x y X
-1
- (sinh al,)cosh al (coshZalpy)sin®Bl,y + (sinh2alj,)cosZpl (B8)
A A A A A A

The values of (ZO/ZC)X and (ZO/ZC)y were computed for each frequency by sub-

stituting the values of o and B, obtained from the numerical solution of
equations (B5) and (B6), into equations (B7) and (B8). Note that the experi-
mental values of (PA/PC)X and (PA/PC)y are explicitly required in equa-

tions (B7) and (B8).

13



As a check against obtaining extraneous roots in computing o, the experi-
mental magnitude and angle of the complex dimensionless admittance at station C
were compared with values obtained from (1) an equation for the specific char-
acteristic impedance of the line (eq. (C18)) and (2) an approximation of the
specific impedance at station C looking downstream (fig. 2) obtained by taking
it as the resistance of the downstream orifice found from the slope of a curve
of mean pressure against fluid velocity. These experimental and calculated
values corresponding to the runs shown in figures 3 to 5 are given in table I

(p. 8).
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APPENDTIX C

DERIVATION OF ANATYTICAL PRESSURE TRANSFER FUNCTION AND RELATED PARAMETERS FOR
SMALL SINUSOIDAL, PERTURBATIONS SUPERIMPOSED ON MEAN LAMINAR FLOW
Assumptions

The following assumptions lead to a system of partial differential equa-
tions:

(1) The fluid was considered Newtonian.

(2) Stokes hypothesis (ref. 11, p. 383) was assumed to apply.
(3) The medium was continuous and uniform.

(4) The absolute viscosity was considered constant.

(5) Axial symmetry was assumed to exist, because the line was cylindrical
and its axis was straight.

(6) The perturbation flow was regarded as laminar.

(7) The viscous force that is proportional to 32u'/dx% (ref. 5) and end
effects were neglected, because the ratio of tube inner radius to line length
was small, 6.1x10-%.

(8) The pressure across the cross section of the fluid can be considered
constant, because of (a) the existing condition p/a-/pK << 1 (ref. 7),
(b) the rigidity of the pipe walls (ref. 6), and (c) the straightness of the
pipe.

(9) The nonlinear convective acceleration terms in the momentum equation
were neglected, because the ratio of mean flow speed to the velocity of
sinusoildal-disturbance wave propagation was small, less than 5x10~3 (ref. 5).

(10) The change of density with position at any instant can be neglected,
because the adiabatic bulk modulus of the liquid in the line was at least
3.0x107 pounds per square foot (ref. 5).

(11) The energy equation had little effect on the solution, because (a)
heat conduction can be ignored because of the small difference between the
ratio of specific heats and 1 (0.159) and the large Prandtl number (about 28)
(refs. 10, p. 243, and 7) and (b) heat radiation can be ignored.

(12) The classical thermodynamic equation of state was used, because atten-
uation due to molecular exchanges of energy (discussed in ref. 11) was assumed
negligible.
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Basic Equations

It follows from the assumptions that the system is described by three
partial differential equations (ref. 5). The momentum equation is

op _ _ ou' 0 ou'
'&‘DW’%EG&_) (c1)

The continuity equation is

d ov' v! ou'
SteE TP teg O (ce)
The thermodynamic equation of state for a liquid is
dp Op
2-2 (c3)
Combining equations (C2) and (C3) and averaging the result over the cross-
sectional area of the line gives (ref. 5)
op _ du (c4)

R

The steady-state solution only is sought. For a sinusoidal disturbance, the
perturbation velocity in the axial direction wu' and the perturbation pressure

P can be written as
u' = U'(x,r)edwt (Ccs)
p = Peduwt (ce)

where P 1is a function of x only. For a tube wall that is stationary in the
axial direction, the component of fluid velocity in the axial direction at the

wall of the tube is zero. Therefore,
U'(x,a) =0 (c7)

Substituting equations (C5) and (C6) into equation (Cl), solving for U'(x,r)
with the use of equation (C7), and averaging the resulting equation over a cross-
sectional area gives the complex amplitude of the velocity perturbation averaged
over a cross-sectional area as (ref. 10, p. 240)

oP
5% 2 Jq(al)
U=;I\T—2‘ 1 -mJ—(———yO ol (08)

where
. o ,
N =(1 - — (63°]
(1 -3) \/Zu (C9)
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Define

_ 2 Jl(al\T)
T a Jozeth (ClO)
Rearranging equation (C8) gives
OP _ .
-5 (R + Jjwpg)U (c11)

where the effective density of the fluid (also referred to as the "distributed

specific series inertance") is
bw 2‘/9‘_’3 + I, - I
i Zu( 2u ¥ X

VE-) - ()

and the distributed specific series resistance is

e = > (c12)

P
- poyY == (Ix + 1)
R - 2y Y (c13)

2 2
Pw po
‘/—- T] + ‘/ + I
( 2 X) (Zu )
Generally following the method of reference 10 (pp. 233-236), that is, solving

equations (C4) (with the use of complex notation) and (Cll) for P and U and
using the boundary condition

P

£ _ Zc at x = 0 (station C) (C14)

Uc

gives

Z cosh(a + jp)x + Z, sinh(a + jB)x
Zg + Zg

where the attenuation constant is the positive root of

% [ 2K<‘/m 02 + RE - wpe>]l/2 (c16)

(c15)

P = 2P,

the phase constant is

B = Y — + ol (c17)
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the specific characteristic impedance of the line is
_K :
Zo = = (B - Ja) (Cc1s)
w
and Py is a constant. (Physically, Py is the disturbance complex pressure
amplitude at x = O for the component of the wave that is traveling in the
negative x-direction.)

Transfer Function

From equation (C15) the complex amplitude of the pressure perturbation at
station C (x = 0) is

Z¢
Py = 2P, TG (c19)
Dividing equation (C15) by equation (C19) gives
P . Zo
B - cosh(a + jB)x + 7o sinh(a + jp)x (c20)

from which equations (1) and (2) immediately follow.

Calculation of Parameters

In order to calculate the theoretical values of o, B, and Zy, Ix and
Iy must be found. It is noted that

N = - @ 53/2 (c21)

Equation (C21) and the definition of Bessel-Kelvin functions of the first kind

given in reference 1z yield
ber( (-a ‘/992 >+ Joeiy <-a‘/%) (c22)
i o
bery (—a '/%w_) + jbeil(_a /%9) (c23)

where berp(-a~/ow/u), beig(-a~/ow/n), ber;(-a~/ow/n), and beij(-a~/pw/i) are

real. Tables (refs. 12 and 13) do not explicitly give values of bery and
beiq. They can be evaluated from the relations (ref. 13)

Jo(al)

I

and

1 .y
ber; = — (beré - beif) (C24)

~/Z

and
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1
Vi

Series forms of berpy, beip, berd, and beil, given in reference 12, and equa-

tions (C22) to (C25) yield
bern (a.‘/£§3)4-jbeio (a %% ) (c2e)

-berq (a‘/%) - jbeiq (a _pEw ) (caT)

Combining equations (C10), (C28), and (C27) and rearranging terms gives

5 berq (a«%“)ba-o (a‘/%>+ beiq (a‘/p—;‘f )beio (a‘/p‘—:)>
IX =-z > ( (c28)
2 ) + 2 B
bero a‘/ n + belo a " )

e (Vo (o) - iy (o e ()

Yy a
bercz) a" &) beig a‘/@
(3 3%

The values of o, B, and Zy can now be obtained for a given frequency from
tables (refs. 12 and 13) and the appropriate preceding equations.

beiy = (oer ] + veid) (ces)

Jo(aN)

Il

i

Jl(aN)

(c29)

Simpler approximate formulas for the attenuation constant o, the phase
constant B, and the specific characteristic impedance of the line Z, are
given in references 7 and 10.
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APPENDIX D

PHYSICAL CONSTANTS OF TEST OIL

The values of the density p of the test o0il were obtained from the manu-
facturer. All other physical constants were obtalned from references 14 and 15
for an oil of the same density and viscosity as those of the test oil. The
minimum Prandtl number for the oil in the tests was 28; the ratio of specific
heats in the experiment was 1.159. The density and bulk modulus of the o0il are

given in the following table:

Run |Temperature Density Adiabatic bulk modulus®
°F | % sl;;tés/cu ft|kg/cu m 1b/sq ft| N/sqm
a | 125 325 1.65s | sso 3.04x107 | 1.46x10°
b 100 311 1.67 861 3.22 1.54
c 80 300 1.68 866 3.37 1.61

aCorrected for line compliance as in ref. 1.
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APPENDIX E

DETERMINATION OF BEST CURVE THROUGH EXPERIMENTAL
ATTENUATTON CONSTANT DATA POINTS

A Ppest-fit curve of the form

ap = A /T (E1)
is determined by a least-squares method. The constant A is chosen such that
= —\2
>, (O"i - AVfi) = Minimum (E2)
i

Equation (E2) requires

Zr_l;(ai , Aﬁ)ﬁ: 0 (E3)

Solving equation (E3) for the desired value of A gives

n
X o Ty
L
SERN
2T
1

A= (E4)
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11.
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14.

15.
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